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1 Introduction 
 
This document is written for readers with an interest in agricultural robotics. Although robotics is not 
commonplace yet in the field of agriculture, there are already so many past and ongoing projects and products 
that it is difficult to decide where to start. What are the best practices to build upon? This document contains 
up-to-date overviews of potential examples as well as suggestions for best practices that can be used as a 
solid base for further developments. 
 
As cited from a recent review paper [122], "practical agriculture robots rely not only on advances in robotics, 
but also on the presence of a support infrastructure. This infrastructure encompasses all services and 
technologies needed by agriculture robots while in operation, this include a reliable wireless connection, an 
effective framework for Human Robot Interaction (HRI) between robots and agriculture workers, and a 
framework for software sharing and re-use“. This statement is captured in the schematic representation in Fig. 
1. Apparently, an integrated framework for software/hardware for agricultural robotics domain has not yet been 
in place, as there are lots of existing tools out there. However, lots of agricultural robotics problems may not 
use the best tools to solve them or are not aware of some tools. So listing and analyzing the existing open 
software/hardware tools will help improve the performance of common agricultural robotics problems. 

 
Fig 1: Schematic representation of the challenge of implementing agricultural robotics. From [122]. 
 
This document is a “live” document which will receive updates throughout the project. It is intended as a stand-
alone document that can be used for a quick-jump into the state of the art of agriculture robotics. Nevertheless, 
it is part of a Europe-wide endeavor which is the agROBOfood project, which intends to connect all of Europe’s 
many high-quality projects on agriculture robotics. The following list of ongoing projects is taken from the 
EuRobotics Multi-Annual Roadmap on Robotics [97]: 

• HUBRINA (HUman-roBot co-woRking IN Agricultural master-slave systems)  
• ECHORD. Master-slave robot control for agricultural activities.  
• FutureFarm  
• ERA-NET ICT Agri. Typify current and new robot technology and their potential tasks in farming.  
• CROPS (Clever Robots for Crops)  
• ERA-NET ICT Agri. Intelligent sensing and manipulation for sustainable production and harvesting of 

high value crops  
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• RHEA (Robot Fleets for Highly Effective Agriculture and Forestry management)  
• ERA-NET ICT Agri. Design, development, and testing of a new generation of automatic and robotic 

systems for both chemical and physical –mechanical and thermal– effective weed management 
focused on both agriculture and forestry.  

• GEOPAL (GNSS-based Planning system for Agricultural Logistics)  
• QUAD-AV (Ambient Awareness for Autonomous Agricultural Vehicles)  
• ERA-NET ICT Agri. Enhancing SaftetyLevel of autonomous agricultural vehicles during process in 

terms of threads to humans, animals and tangible goods.  
• SmartBot - (here: Subproject AgroBot) 
• INTERREG. Develop basic technologies needed for constructing multiple, agriculture, robotic 

demonstration models with different application 
• Robs4Crops – bringing the farmer perspective to agricultural robotics 

 
This document focuses on mobile ground-based robotic systems. Interesting topics not included in this 
document are aerial robotics as well as fixed (non-mobile) ground-based systems that operate on conveyor 
belts or move as large CNC machines [124]. Furthermore, due to the abundant availability of research project 
information as opposed to commercially available solutions, this is overrepresented in the current version of 
the document. 
 
The content is distributed of the next chapters in the following way. Chapter 2 selects the best candidate overall 
software framework, Chapter 3 focuses on the technological best practices within that framework, and Chapter 
4 focuses slightly more on organizational aspects, yet still firmly connected to the robot technologies.  
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2 Best Robotics Software Framework 
The first step toward the recommendation of the best specific practices for Agricultural robots is to make a well-
informed choice regarding the overall software framework to use. We have done a comparative study which 
concludes that currently ROS is the best practice. The detailed analysis is given in this chapter. That conclusion 
is the basis for the selection of more specific information in Chapters 3 and 4. 

 

2.1 Robotics frameworks and middleware’s 
Agricultural robots are complex systems. Typically many different processes need to run concurrently, such as 
navigation, perception, manipulation and process and mission control. Enabling this in a software system while 
keeping the software modular and well-structured calls for a programming framework including middleware. 

There are a number of open source programming and middle ware frameworks available for robotics that have 
reached product readiness. The most common middleware frameworks in robotics, which will be analysed in 
the following sections, are: 

1. ROS - The Robot Operating System 

2. ROS2 - The Robot Operating System2 

3. YARP - Yet Another Robot Platform 

4. ROCK - The Robot Construction Kit 

5. Orocos - Open Robot Control Software 

 

2.2 The Robot Operating System 
The Robot Operating System is probably the best known open source 
software development kit for robotics. It is proven in use and already in many 
robot products. Today, more than 80k developers have used ROS for building 
software on Github. 

 

2.2.1 Notable Features 
• High quality ecosystem packages for navigation, manipulation, perception and simulation 
• Integration with a large number of robots (industrial, service and automobile) 
• Bridges to all other robot programming frameworks and middleware’s mentioned here 

 

 

 

https://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Ros_logo.svg/1280px-Ros_logo.svg.png
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2.2.2 Related links 

Reference type Link 

Documentation http://wiki.ros.org/Documentation 

Support https://answers.ros.org/questions/ 

Core Repositories https://github.com/ros 

Package Index https://index.ros.org/ 

Governance Organization https://www.openrobotics.org/ 

Supporting Initiatives https://www.autoware.org/, https://rosindustrial.org/ 

 

 

2.3 The Robot Operating System 2 
ROS also has a second version, that is being developed by major companies and is cut 
towards industrial usage. ROS2 is definitively the future of robotics software development. 
The first stable release is from June 2020 and the package ecosystem is growing. 

 

2.3.1 Main Target Systems 
• Service robots (PR2, Care-O-Bot 3+4,… ) 

• Industrial robots (Yaskawa, UR, Pilz, Techman, Doosan, …) 

 

2.3.2 Notable Features 
• High quality ecosystem packages for navigation, manipulation, perception and simulation 

• Real-time capabilities and development lead by Technical Steering Committee 

• Bridges to all other robot programming frameworks and middleware’s mentioned here 

 

 

 

 

 

 

 

http://wiki.ros.org/Documentation
https://answers.ros.org/questions/
https://github.com/ros
https://index.ros.org/
https://www.openrobotics.org/
https://www.autoware.org/
https://rosindustrial.org/
https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Favatars0.githubusercontent.com%2Fu%2F3979232%3Fs%3D280%26v%3D4&f=1&nofb=1


  10 / 42 

 

 
 
 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under Grant Agreement No 825395 
 

2.3.3 Related links 

Reference type Link 

Documentation https://docs.ros.org/en/foxy/index.html 

Support https://answers.ros.org/questions/ 

Core Repositories https://github.com/ros2 

Package Index https://index.ros.org/ 

Governance Organization https://www.openrobotics.org/ 

Supporting Initiatives https://www.autoware.org/, https://rosindustrial.org/ 

 

 

2.4 YARP (“Yet Another Robot Platform”) 
YARP supports building a robot control system as a collection of programs 
communicating in a peer-to-peer way, with an extensible family of connection 
types (tcp, udp, multicast, local, MPI, mjpg-over-http, XML/RPC, tcpros, …) that 
can be swapped in and out to match your needs. 

 

2.4.1 Main Target Systems 
• Humanoid robots (I-Cub) 

 

2.4.2 Notable Features 
• Support for Linux & Windows 

• Legged robot support through whole body controller 

• Driver support for a number sensors and actuators 

 

 

 

 

 

https://docs.ros.org/en/foxy/index.html
https://answers.ros.org/questions/
https://github.com/ros2
https://index.ros.org/
https://www.openrobotics.org/
https://www.autoware.org/
https://rosindustrial.org/
https://external-content.duckduckgo.com/iu/?u=http%3A%2F%2Fwww.yarp.it%2Fgit-master%2Fyarp-logo-name.png&f=1&nofb=1
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2.4.3 Related links 

Reference type Link 

Documentation http://www.yarp.it/git-master/index.html 

Support (for ) https://github.com/robotology/icub-tech-support 

Core Repositories https://github.com/robotology 

Package Index https://github.com/robotology/robotology-superbuild 

Governance Organization https://www.iit.it/web/guest 

Supporting Initiatives https://icub.iit.it/ 

 

2.5 The Robot Construction Kit 
Rock is a software framework for the development of robotic systems. The underlying 
component model is based on the Orocos RTT (Real Time Toolkit). Rock provides all 
the tools required to set up and run high-performance and reliable robotic systems for 
wide variety of applications in research and industry. It contains a rich collection of 
ready to use drivers and modules for use in your own system, and can easily be 
extended by adding new components. 

 

2.5.1 Main Target Systems 
• High reliability robots 

 

2.5.2 Notable Features 
• Sustainable systems with focus on error detection and reporting 

• Driver support for a number sensors and actuators 

• Heavily based on OROCOS toolchain 

 

 

 

 

 

http://www.yarp.it/git-master/index.html
https://github.com/robotology/icub-tech-support
https://github.com/robotology
https://github.com/robotology/robotology-superbuild
https://www.iit.it/web/guest
https://icub.iit.it/
https://avatars.githubusercontent.com/u/6654878?s=200&v=4
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2.5.3 Related links 

Reference type Link 

Documentation https://www.rock-robotics.org/documentation/about/index.html 

Support (for ) http://www.dfki.de/mailman/cgi-bin/listinfo/rock-dev 

Core Repositories https://github.com/rock-core 

Package Index https://github.com/rock-core/rock-package_set 

Governance 
Organization 

https://www.dfki.de/en/web/technologies-applications/living-labs/robotics-
exploration-laboratory/ 

Supporting Initiatives  

 

2.6 Open Robot Control Software 
Orocos is a portable C++ library for advanced machine and robot control. Over the 
years, Orocos has become a large project of middleware and tooling for 
development of robotics software. The main parts of this project are the Real Time 
Toolchain (RTT) and the Orocos Component Library (OCL). 

 

2.7 Comparison 
In order to choose the right open source robot framework and middleware many factors are important. 
However, for professional use cases the most important factor is long term support and availability. 

Feature ROS ROS 2 YARP ROCK OROCOS 

Real-time support ❌ ✅ ✅ ✅ ✅ 

Open source manipulation infrastructure ✅ ✅ ❌ ✅ ❌ 

Open source navigation infrastructure ✅ ✅ ❌ ❌ ✅ 

Open source perception infrastructure ✅ ✅ ❌ ❌ ✅ 

 

The table suggests that ROS2 will be the Best Practice in the near future. However, currently there are not 
sufficient (publicly known/available) implementations to use as a blueprint for Agriculture robotics. Therefore, 
at the time of writing, ROS(1) is still the Best Practice. The lack of (hard) real-time support is not a hindrance 

https://www.rock-robotics.org/documentation/about/index.html
http://www.dfki.de/mailman/cgi-bin/listinfo/rock-dev
https://github.com/rock-core
https://github.com/rock-core/rock-package_set
https://www.dfki.de/en/web/technologies-applications/living-labs/robotics-exploration-laboratory/
https://www.dfki.de/en/web/technologies-applications/living-labs/robotics-exploration-laboratory/
https://external-content.duckduckgo.com/iu/?u=http%3A%2F%2Fhomepages.laas.fr%2Fmallet%2Forocos%2Fpovray%2Forocos-grip.jpg&f=1&nofb=1
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for most agricultural applications. The remainder of this document follows our main conclusion and is therefore 
mostly focused on ROS(-related) best practices. 
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3 Best practices from a technical point of 
view 
3.1 Common use cases in Agri-Food domain 

3.1.1 Introduction 
There are many robotic applications in agri-food domains. Fig 2 shows a classification of tasks as 
proposed by [96]. In this deliverable, we focus on the subset of the three most occurring tasks as 
listed by a recent survey [1]. These three are, in order of robotic complexity,  

(i) field scouting and data collection,  
(ii) weed control and targeted spraying, and  
(iii) automated harvesting robots.  

 

 

Fig 2: An overview of robot agriculture tasks, taken from [96]. 

 

3.1.2 (i) Field scouting and data collection 
Table 3.1 provides an up-to-date overview of field scouting and data collection robots. Due to information 
availability, research projects are better represented than commercial solutions. From this overview, we select 
Blok’s orchard robot shown in Table 3.1.a [12] as the “best practice” example due to its extensive description 
as well as its coverage of most common components and packages. 
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a. Husky A200 robot with 2D LIDAR 
scanner used for orchard navigation 

[12] 

 
b. A prototype field survey mobile 

robot platform [135] 

 

c. Husky UGV for vineyard 
monitoring [10, 15] 

 

d. TrimBot2020 for automatic 
gardening [78] 

 

e. TerraSentia for in-field plant trait 
data collection; Source: 

https://www.earthsense.co 

 

f. Mobile Agricultural Robot Swarms 
(MARS) for seeding tasks [136] 

 

g. VINBOT – an all-terrain mobile 
robot for capturing and analyzing data 
in a vineyard; Source: http://vinbot.eu/  

 

h. SMP S4 – a surveillance robot to 
protect orchards from birds; Source: 

https://smprobotics.com/ 

 
i. VineRobot for monitoring  

vineyards; Source: 
http://www.vinerobot.eu/ 

 

j. Shrimp – a UGV for data collecion 
[145] 

  

Table 3.1: An overview of field scouting and data collection robots 

 

Besides common motion and sensing subcomponents, the specific robotic technology required for these robots 
is an exhaustive navigation system. Such a system comprises automatic and accurate navigation control, 
simultaneous localization and mapping, path planning algorithms, and three-dimensional environment 
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reconstructions [1]. From the detailed list of technologies in Section 3.2, the following pertain specifically to 
field scouting and data collection robots: 

• Mobile platform 
• Simulation environment 
• Navigation sensors 
• Internal communication 
• Software framework 
• SLAM (Simultaneous Localization and Mapping) 
• Environment reconstruction 
• Path planning 

 

3.1.3 (ii) Weed control and targeted spraying 
One of the most demanded and common applications for agricultural robots could be weed control. The 
following weed control and targeted spraying robot projects can be used as examples and source of inspiration. 
We have obtained this list mostly from various survey papers [1, 3, 53, 54]. 

 

 

 

 
a. BoniRob; Source: Deepfield 

Robotics [32] 

 
b.  High speed electric in-row 

weeding machine; Source: Tillett 
and Hague Technology [33] 

 

c. Dino – an entirely autonomous 
weeding robot; Source: 

https://www.naio-
technologies.com/en/ 

 

d. AgBot II; Source: Queensland 
University of Technology [142] 

 

e. AVO performs autonomous 
weeding operations; Source: 

https://www.ecorobotix.com/en/ 

 

f. RIPPA – a prototype robot for  
shooting weeds using a micro-dose 

of liquid; Source: University of 
Sydney  
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g. Tertill – a solar powered weeding 
robot for home gardens; Source: 

https://franklinrobotics.com/ 

 

h. S55 spray robot made for 
automatic spraying in a greenhouse; 

Source: 
http://www.hollandgreenmachine.com 

 
i. SwagBot [143] – an all-terrain, 

four-wheeled, solar-powered robot; 
Source: University of Sydney 

 
j. Hortibot [144 – a semi-autonomous 

weeding robot; Source: Aarhus 
University 

 

k. Ladybird – an omni-directional 
robot for targeted spraying and data 

colleciton [146] 

 

 
l. Robovator – a vision based 

robotic hoeing machine for 
controlling weeds in row crops; 

Source: https://www.robovator.com/ 

 
m. Odd.Bot Weed Whacker – an 

autonmous weed-plucking robot that 
uses no chemicals ; Source: 

https://www.odd.bot/ 

 

 
n. AgroIntelli Robotti – a diesel-

hydraulics autonomous tool for both 
for sowing and spraying; Source: 

http://www.agrointelli.com/index.html#
home 

 

o. Asterix – an light-weight, 
autonmous farm-bot desinged for 

spraying herbicides on weeds only; 
Source: 

https://www.asterixproject.tech/ 

 

 

Table 3.2: An overview of weed control and targeted spraying robots 

 

Weed control and targeted spraying robots are more complex than the category of field scouting and data 
collection robots. The additional technologies can be summarized as a targeted motion system together with 
a robust perception system which includes weed detection, weed and crop identification and crop localization. 
From the detailed technologies listed in Section 3.2, the following additional technologies pertain specifically 
to weed control and targeted spraying robots: 
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• Specific hardware components for weeding and targeted spraying 
• Robot arms 
• Perception hardware 
• Weed/crop classification algorithms 

The performance of state-of-art weed control robots is good in ideal conditions. However, in uncontrolled or 
semi-controlled environments, problems emerge due to the variety in lighting, density and species of weed 
plants, and occlusion of mixtures of plants [3]. This remains a major challenge to commercialization of weed 
control robots. 

Although all examples in the Table 3.2 are useful sources for inspiration, at the time of writing we have selected 
BoniRob as the most useful example for “best practice” for weeding robotics. This choice was made based on 
the extensive descriptions [23, 55-58]. 

 

3.1.4 (iii) Harvesting 
The third and most demanding main category of agriculture robotics is robotic harvesting. This not only requires 
all of the navigation capabilities of scout robots and all of the classification and positioning capabilities of weed 
removal robots, but adds three significant additional capabilities: crop detection, motion planning, and 
dexterous manipulation. The overview below shows a large number of research projects which can serve as 
inspiration for the development of high-performance harvesting robots.  

 

 
a. SWEEPER –  a robot for 

harvesting sweet pepper fruit in 
greenhouses [147] 

 
b.  Green Robot Cotton Harvester 
V 02 developed by Green Robot 

Machinery [139] 

 

c. Strawberry-harvesting robot [31] 

 

d. Harvey – the robotic capsicum 
harvester [7] 

 

e. Cucumber harvesting robot [148] 
 

f. Kiwifruit harvester mounted on the 
base robotic platform [149] 
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g. Apple-picking robot; Source: 
https://www.abundantrobotics.com/ 

 

h. Tomato harvester; Source: 
https://metomotion.com/ 

 
i. Energid citrus picking system; 

Source: https://www.energid.com/ 

 
j. Dual-arm tomato harvesting robot 

testing in the greenhouse [150] 

 
k. Cherry-tomato harvesting robot 

[151] 

 
l. Panasonic AI-equipped tomato 

harvesting robot [152] 

Table 3.3: An overview of harvesting robots 

 

Compared to weeding and targeted spraying robots, harvesting robots are more complex. The additional 
capabilities that set harvest robots apart from scout or weeding robots, as detailed in Section 3.2, are the 
following: 

• Harvesting end-effectors 
• Crop detection and localization 
• Grasp selection 
• Robot manipulator path planning 

 

3.2 Open-source software/hardware components 

3.2.1 Introduction 
To avoid duplication of effort and reinventing the wheel, a great range of existing technologies from other 
robotics domains could be used to facilitate the transition of agricultural robotics into the field. Some 
technologies might need to be developed specifically for agriculture from scratch, while other technologies 
already developed for general robotics could be adapted to the agricultural domain, for example, autonomous 
vehicles, artificial intelligence and machine vision [4]. Hereby, in this section, we briefly review those 
technologies widely used in the agricultural domain, which are pertinent to aforementioned use cases. We also 
list the best practices regarding all of the specific components required for agriculture robotics. Although the 
focus of the document is on open-source components (which mostly entails software), we have included best 
practices for hardware component selection as well; not only does this provide a more complete overview of 
the state of the art, it also provides clarity how hardware decisions influence the use of open-source software 
components.  
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3.2.2 Hardware 
Mobile platform 

A common denominator in many projects is the use of a rugged, not-too-large, open-source-ready mobile 
platform. Examples include ClearPath’s Husky robot [8] as used in projects [10,11,12,13,14,15,16] above, and 
Robotnik’s Summit-XL [9] as used in project [17]. It is highly recommended to base at least the initial 
developments on such an existing, generic platform. 

 

Hardware components specific for weeding and targeted spraying 

The specific hardware for weeding and targeted spraying strongly depends on the crop and intended treatment. 
Although it is impossible to identify a single “best practice”, one can find many inspirational examples in these 
papers [1,3,53,54]. 

 

Positioning hardware – robot arm 

As soon as it is required to bring a spray head or mechanical weeding device to a specific position relative to 
the mobile base, one requires a positioning system for at least 3 degrees of freedom. Two best practices have 
been identified. First, for fast and lightweight motions with limited reach, a parallel robot construction is often 
used and the most popular type is “Delta robot” [59, 60]. Commercially available parallel robots are developed 
for static systems, so the best practice is that the hardware is developed specifically for the intended 
application, while the control software is taken from a common source (either commercial [61, 62] or open-
source [63, 64]). Second, for motions which require larger reach and full orientation control, at the cost of 
operational speed, it is common to use a commercial serial robot manipulator arm. Due to the mobile weight 
and power limitations, the best practice is to use a lightweight industrial arm such as a Fanuc LR Mate [65], a 
Universal Robot [66], a Franka Emika Panda [67] or an even more lightweight wheel-chair specific robot arm 
[68]. Available ROS drivers make it fairly straightforward to integrate these robot arms into the mobile robot. 

 

End-effector for harvesting 

From a thorough review of all available literature on harvesting robots, it is clear that the end effector will always 
be a very crop-specific and process-specific design. Each project has a unique gripper or cutter or other type 
of harvesting end-effector. The best practice here appears to be to take inspiration from all available 
publications, specifically those fully dedicated to designing (harvesting) end-effector [27, 31, 74, 78-82], and 
then to aim for a fast multi-prototype design process to handle unforeseen interactions with the crop [83, 84]. 
The end-effector must usually be moved in 6 dimensions for proper harvesting, and so we reiterate our previous 
best practice recommendation of using a standard and lightweight serial robot arm as commonly used in other 
industries. Efforts to make own robot arm designs to optimize for lower cost and higher speed (e.g. attempting 
to trade those off for lower required accuracy) usually don’t succeed due to underestimation of the design 
efforts necessary for creating robust hardware and software.   

 

3.2.3 Sensors 
In robotics, sensors could be categorised into two groups: internal and external. Internal sensors are used to 
measure robot parameters relative to the reference frame of the robot, such as a joint angle, a linkage 
deflection, or a gripping force. External sensors are used to measure the environment and the position of the 
robot relative to that environment [137]. The sensors that are most widely used in robotics and supported by 
official ROS packages [121] can be summarized as follows: 
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• Inertial sensors (IMU) 

• Orientation sensors (GPS) 

• Laser range sensors (1D range finders, 2D range finders) 

• 3D sensors (range finders & RGB-D cameras) 

 

Navigation sensors 

For outdoor navigation, a common best practice is the use of GNSS [125], typically Differential GPS for higher 
accuracy or RTK-GPS for extremely high accuracy [23]. Some research is done on purely vision-based 
navigation [24, 25] in order to prevent the perceived high cost for GPS, but this is not considered a best practice. 
For indoor (greenhouse) navigation, where GPS does not work well, there is no best practice yet that is 
commonly shared, and novel ideas such as Artificial Potential Fields are explored [26].  

Additionally, field robots commonly use a LiDAR sensor [23, 27] to obtain a 3D scan of its near surroundings 
and an IMU sensor for orientation. There are many parallels with autonomous vehicle projects here, and many 
opportunities to reuse both research and available solutions. 

 

Crop/weed perception sensors 

Best practices include 2D and 3D image sensors and multi-spectral sensors [69-72]. In almost all systems, the 
developers have chosen to shield sunlight as much as possible, as this dramatically interferes with the sensors. 
A typical construction is that of a black, shielded casing around the sensors, which is being held as closely 
above the ground as possible [55, 73].  

 

3.2.4 Low-level communication protocol 
Internal communication 

Since CAN-bus has been adopted as ISO standard 11783 (also known as “ISOBUS”[34, 35]) for agriculture 
machinery, a best practice is to use this for the low-level communication between motion controllers, actuators, 
and other components. Unfortunately, this conflicts with the internal low-level communication inside common 
mobile research platforms such as the ClearPath’s Husky as mentioned above. A best practice is to ensure 
the availability of ISOBUS-compatible communication for easy extension of the system with additional 
components. This is, however, limited to low-level communication only. For higher-level communication, a best 
practice is to adhere to the communication standards of a software framework as described below. 

 

3.2.5 Overall software framework 
ROS: overall software framework 

One of the strongest common denominators of all field scouting and data collection robots is the use of ROS 
(Robot Operating System) as the software framework. Although there are many other frameworks as well [128, 
129], ROS has become the de-facto standard. Besides an overwhelming amount of generic examples and 
tutorials to use ROS for mobile robots [36-39], there are a number of excellent descriptions of the specifics of 
ROS in agricultural settings [28, 40-42]. Best practices are collected and demonstrated in the open-source 
projects FroboMind [5, 43], AgROS [20], and ROS-Agriculture [29, 30]. The software framework allows an 
almost unlimited extension of the robot’s capabilities through adding more and more (open-source) software 
packages written for this framework. For the current category of robots, which basically only need to navigate, 
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the best practice includes packages for SLAM, path planning and environment reconstruction as elaborated 
below. 

 

3.2.6 Navigation algorithm 
SLAM algorithm 

SLAM stands for Simultaneous Localization and Mapping, which is a category of algorithms that has various 
implementations [44-46, 130]. All mobile robotic devices including (semi-) self-driving cars use this type of 
algorithm. For the current version of this document, it is unclear if there already is a best practice regarding the 
choice and implementation of SLAM for agriculture robotics. The natural yet repetitive environment makes it 
hard to use landmarks for map-building and navigation, yet (at least for outdoor agriculture) the GNSS is highly 
accurate.  

 

Environment reconstruction 

Best practice examples of agricultural robots typically use a LiDAR as illustrated above, which provides 3D 
information. The most common way for initial storage of that data is as a “Point Cloud”. A collection of effective 
algorithms to process this kind of data is available through the open-source Point Cloud Library [47]. Good 
examples for the application of this library in agricultural robotics can be found in [48-51]. 

 

Path planning algorithm 

Path planning is the final type of generic algorithm that will be present in all mobile robots [52]. In agriculture, 
path planning is in some regards simpler than in challenging environments such as crowded public spaces. A 
difficult challenge remains the presence of foliage which should not be considered as a hard constraint, but 
can (and must) occasionally be pushed aside. Good examples of path planning in agriculture settings can be 
found in [10, 15, 27, 130]. 

 

ROS navigation stack 

It’s essential for an autonomous robot to navigate itself across a crop field without human assistance, e.g. field 
scouting robots for data collection. Generally speaking, an exhaustive navigation system is required a 
combination of three fundamental competences, that is, mapping, localization, and path planning [6]. There 
are many software toolboxes/packages capable of providing those competences. To the best of our knowledge, 
one of the most well-known software packages used in robotics is the Navigation Stack in ROS 1. Inputs 
generally required in Navigation Stack are odometry and sensor data such as a continuous stream of 2D/3D 
scans or 3D point clouds of the immediate environment. Outputs are velocity commands sent to a mobile base.  
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Fig 3: Overview of Navigation Stack in ROS 1 

 

There is Navigation Stack in ROS 2 [138] as well. The main changes from ROS 2 is that the move_base 
(nav2_simple_navigator) has been split into multiple components (nav2_navfn_planner and 
nav2_dwb_controller) and a behaviour tree is implemented to orchestrate these components. These changes 
provide flexibility and extensibility of the navigation stack behaviour as it is possible to replace any of these 
nodes at launch/run time.  

 

3.2.7 Crop/weed sensing algorithms 
Weed / crop classification algorithms 

The choice for perception sensors is linked to the choice for classification algorithms. Currently, the best 
practice is to use Deep Learning algorithms. Within the span of just a few years, this approach has completely 
taken over from more “old-fashioned” classification algorithms which are still in use [73-75]. A few years ago, 
the best practice would probably consist of a combination of color segmentation and Bayes classification or 
Support Vector Machines, where the algorithm’s parameter settings would be optimized with training data, 
which would need to be re-trained for each season. 

Deep Learning is a generic term, and for agriculture applications many variations are in use [76]. Obtaining 
and properly labeling the training sensor data is crucial for success, [76] provides a list of available open 
datasets 

 

Crop detection and localization 

Compared to weeding, harvesting leads to much more complex tasks of detection, classification, and 
localization. Crops are often partially occluded [85], and misinterpretation of the cutting location of the crop 
might result in cutting vital parts of the plant and/or damaging the crop [86]. This is still an active field of 
research, and the best practice appears to be to aim for a combination of detection methods [87-89]. 
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3.2.8 Simulation 
Simulation 

An essential aspect for effective robot development is the ability to test to high fidelity in simulation 
environments. [18] provides an excellent survey of simulation tools that allow initial development with little 
overhead cost. The survey “concluded that V-REP <now CoppeliaSim> offers a higher number of useful 
features, such as multiple physics engine, comprehensive robot model library, and the ability of a user to 
interact with the world during simulation and, most importantly, mesh manipulation and optimization, however 
it is the most CPU resource-hungry of the simulators.” Another favorite is the ROS-native Gazebo simulation 
environment which is used abundantly in (agriculture) robotics projects. In addition to the environments further 
listed in [18], we also encountered a specifically developed agriculture framework [19], an agriculture emulation 
framework AgROS [20], the possibility to use Unreal Engine [21] or the content-rich and popular “Farming 
Simulator” game environment [22]. For further testing towards successful real-world implementations, we see 
an increasing drive towards “hardware-in-the-loop” or “human-in-the-loop” simulations, where parts of the 
system are simulated and other parts are real [126, 127]. 

 

3.2.9 Manipulation 
Grasp selection 

Once the location and orientation of the crop has been determined, the robot must decide how to position the 
end effector. This is a constrained optimization problem where the stem should be cut but no other plant parts 
should be damaged. Within the field of generic robotics, a best practice we believe is to do grasp selection with 
a Deep Learning algorithm as well [90-94], Calculation time used to be a challenge, but very fast algorithms 
are becoming available [95]. 

 

Manipulator: path planning 

While weeding end-effectors can usually move in a straight line toward the weed, for crop harvesting there are 
often severe obstacles such as branches [77, 141] and other unripe or un(der)developed crops. This requires 
advanced path planning algorithms to avoid those obstacles. The current best practice is to use a randomized 
or optimizing motion planner as implemented in OMPL which can be used through the package MoveIt in ROS. 
New motion planning algorithms are still in development, and a very interesting research avenue is to plan 
motions that purposefully push parts of the obstacles away [31]. Retrieving the crop is yet another challenging 
motion planning problem, because now a collision-free motion for the manipulator including the crop must be 
found. A best practice example can be found in [96].  

 

ROS MoveIt 

MoveIt [132] is a user-friendly open-source robotics manipulation platform which runs on top of ROS. It 
leverages ROS software by providing high-level functionalities for robotics manipulation such as collision 
checking, inverse kinematic algorithms, trajectory processing, etc. To the best of our knowledge, it is one of 
the most widely used open-source robotics manipulation platforms for developing commercial applications, 
prototyping designs, and benchmarking algorithms. It has been recommended and used for agricultural robots 
especially on harvesting robots [7, 28, 41]. 
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4 Best practices from an organizational point 
of view 

In this chapter, we provide an overview of the non-technical best practices to start working on agricultural 
robotics. The previous chapter listed all of the technical details to create a successful agricultural robot, but 
how should one get started from an organizational point of view? The suggestions in this chapter are useful for 
anyone in the agriculture value chain, and are probably most relevant for those interested in the actual 
development of robot systems.  

 

4.1 Sources of inspiration 
When starting from scratch or re-engaging in agriculture robotic development, it is good practice to be 
‘connected’ with simultaneous developments and to have access to up-to-date information and involved 
communities. A good place to start are the high-quality review documents and other overviews that have been 
produced. We recommend the following sources as point of departure: 

• “Scouting the Autonomous Agricultural Machinery Market”. [96] This report identifies relevant factors 
that will influence the development, estimate their importance, understand the biggest uncertainties, 
and get a feeling of the state of the practice and the state of the art, as well as on how the experts see 
future developments. Elements of this report will appear in other paragraphs below. 

• Multi-Annual Roadmap for Robotics. [97] This document was assembled with the help of a European-
wide network of robotics experts and contains a timeline for technological developments. There is a full 
chapter dedicated to agriculture robotics. 

• “Research and development in agricultural robotics: A perspective of digital farming.” [1] This paper 
was used as one of the main sources for the overviews in Chapter 2. It contains inspiring examples and 
many useful references. 

An additional best practice is to get ‘connected’ by participating in symposia and conferences. A number of 
such events cater exactly to the needs for agriculture roboticists: 

• FIRA [98], every year in December in France.  
• ROScon [99], fully focused on ROS. 
• International Conference on Agricultural Robotics, Automation and Control [100] 

Finally, the best way to stay connected and informed is to be(come) involved in the key online communities 
where open-source software and best practices are exchanged: 

• ROS-Agriculture [101] 
• FroboMind [43] 
• IEEE Agricultural Robotics and Automation Technical Committee [102] 

 

4.2 Open-source software/platforms/framework 
There are a number of widely used open-source software platforms that deserve a more extensive description. 
We will briefly summarize the usefulness of these platforms for agriculture robotic applications, provide pointers 
to the organizational structure of these platforms, and illustrate the best practices to make use of these 
platforms. 
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4.2.1 ROS 
The Robot Operating System (ROS) is an open-source, meta-operating system for writing robot software. It 
provides OS-like features such as hardware abstraction, low-level device control, implementation of commonly 
used functionality, message-passing between processes, and package management. It also provides a 
collection of tools, libraries, and conventions for performing different complex and robust robotic tasks across 
multiple computers/robotics platforms. ROS has become a de facto standard for robot application development. 

From the start, ROS was developed and overseen mainly by Willow Garage. From 2013 till now, the primary 
development of ROS has been taken over by Open Robotics. Over the years,  many other 
organizations/institutions have also made contributions to ROS development as it’s an open-source 
project/framework. The worldwide approval and use of ROS can be attributed to the power and wisdom of the 
crowd. However, the governance framework in ROS community was not clearly identified earlier on. Therefore, 
starting from ROS2, in order to broaden participation to accelerate ROS 2 delivery, a Technical Steering 
Committee (TSC) has been established. TSC is responsible for effective planning, decision making and 
supervision for the technical direction that the project takes, i.e. determining the project roadmap, developing 
core tools and libraries, and establishing working groups to focus on important topics. 

With regard to management and dissemination, ROS has a “ROS Discourse” which is a place to talk about 
ROS and ROS related things. There is also a site called “ROS Answers“ which is dedicated to answering 
questions of the ROS community. In addition to these online forums, the following conferences and community 
meetups are also highly relevant: 

• ROSCon 
ROSCon is a developers conference, in the model of PyCon and BoostCon.  It has occurred every year 
since 2012 for ROS developers of all levels, beginner to expert, to spend two days learning from and 
networking with the ROS community. It is a must-attend event to meet world developers and keep 
abreast of ROS community. There are also national editions of ROSCon such as ROSCon Japan, 
ROSCon France, and ROSCon Hong Kong. 

• ROS-Industrial Conference  
• ROS-Industrial Training 
• ROS-A Community Meeting 

 

4.2.2 OpenCV, PCL 
In addition to ROS as the main robotics framework in use in the best practices of today, a number of other 
open-source frameworks are in use. For image processing, most often one relies on OpenCV [102-106]. 
Modern machine learning approaches such as Deep Learning (next paragraph) do not replace OpenCV but 
work in harmony with it. Another key framework is the Point Cloud Library (PCL) [47-51] which contains 
algorithms for processing 3D image data.  

 

4.2.3 MRPT, OMPL, MoveIt, OpenRave 
For motion planning, path planning, and grasp planning, there are a number of open-source projects available 
which are all linked well with ROS and which are being widely used in all robotics applications, such as MRPT 
for navigation [130], OMPL for robot arm motion planning [131], MoveIt [132] as a wrapper of that for ROS, 
and OpenRave [133] which is often used for grasp planning. 
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4.2.4 Deep Learning frameworks and datasets 
Recently, Deep Learning took the field of robotics by storm, outperforming all other tools for image (or other 
data) classification. Although some state of the art agricultural robotic systems do not yet make use of Deep 
Learning (e.g. [73, 75]), we expect that this will change very quickly. The use of Deep Learning algorithms is 
clearly considered as a best practice for agriculture robotics [53, 76]. It has already been deployed successfully 
for various agriculture tasks [55, 56, 78, 110-112]. 

The robot developer currently has a choice between various Deep Learning frameworks such as Google 
Tensorflow [107], Caffe [108], or PyTorch [109] and some more. An overview of 40 agriculture robotics projects 
[76] shows that there is not yet a clear preference for any one of those frameworks.

Deep Learning algorithms are useful only if there is sufficient high-quality data available for training. From an 
organizational point of view, the best practice is to search for a proven combination of (1) a Deep Learning 
framework, and (2) an available dataset relevant for the specific application. A point of departure for re-using 
or creating agriculture-specific datasets is to first assess the most-used presently available datasets, as shown 
in Fig 4.  

Fig 4: A list of publicly-available datasets related to agriculture [76] 
No.   Organization/Dataset Description of dataset Source 

1. Image-Net Dataset Images of various plants (trees,  vegetables, flowers) http://image-net.org/explore?wnid= 
n07707451 

2. ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) 

3. University of Arcansas, Plants 
Dataset

Images that allow object localization  and detection http://image-net.org/challenges/LSVRC/ 
2017/#det 

Herbicide injury image database https://plants.uaex.edu/herbicide/ 
http://www.uaex.edu/yard-garden/resource- 
library/diseases/ 

4. EPFL, Plant Village Dataset Images of various crops and their diseases https://www.plantvillage.org/en/crops 
5. Leafsnap Dataset Leaves from 185 tree species from the Northeastern United 

States. 
http://leafsnap.com/dataset/ 

6. LifeCLEF Dataset Identity, geographic distribution and uses of plants http://www.imageclef.org/2014/lifeclef/plant 
7. PASCAL Visual Object Classes 

Dataset
8. Africa Soil Information Service 

(AFSIS) dataset

Images of various animals (birds, cats, cows, dogs, 
horses, sheep etc.) 
Continent-wide digital soil maps for sub-Saharan Africa 

http://host.robots.ox.ac.uk/pascal/VOC/ 

http://africasoils.net/services/data/ 

9. UC Merced Land Use Dataset A 21 class land use  image dataset http://vision.ucmerced.edu/datasets/landuse. 
html 

10. MalayaKew Dataset Scan-like images of leaves from 44 species classes. http://web.fsktm.um.edu.my/~cschan/ 
downloads_MKLeaf_dataset.html 

11. Crop/Weed Field Image Dataset Field images, vegetation segmentation masks and 
crop/weed plant type annotations. 

12. University of Bonn Sugar beets dataset for plant classification as well as 

https://github.com/cwfid/dataset 
https://pdfs.semanticscholar.org/58a0/ 
9b1351ddb447e6abdede7233a4794d538155. pdf 
http://www.ipb.uni-bonn.de/data/ 

Photogrammetry, IGG, localization and mapping. 
13. Flavia leaf dataset Leaf images of 32 plants. http://flavia.sourceforge.net/ 
14. Syngenta Crop Challenge 2017 2,267 of corn hybrids in 2,122 of locations between 

2008 and 2016, together with weather and soil conditions 
https://www.ideaconnection.com/syngenta- crop-
challenge/challenge.php 

http://image-net.org/explore?wnid=n07707451
http://image-net.org/explore?wnid=n07707451
http://image-net.org/challenges/LSVRC/2017/#det
http://image-net.org/challenges/LSVRC/2017/#det
https://plants.uaex.edu/herbicide/
http://www.uaex.edu/yard-garden/resource-library/diseases/
http://www.uaex.edu/yard-garden/resource-library/diseases/
https://www.plantvillage.org/en/crops
http://leafsnap.com/dataset/
http://www.imageclef.org/2014/lifeclef/plant
http://host.robots.ox.ac.uk/pascal/VOC/
http://africasoils.net/services/data/
http://vision.ucmerced.edu/datasets/landuse.html
http://vision.ucmerced.edu/datasets/landuse.html
http://web.fsktm.um.edu.my/%7Ecschan/downloads_MKLeaf_dataset.html
http://web.fsktm.um.edu.my/%7Ecschan/downloads_MKLeaf_dataset.html
https://github.com/cwfid/dataset
https://pdfs.semanticscholar.org/58a0/9b1351ddb447e6abdede7233a4794d538155.pdf
https://pdfs.semanticscholar.org/58a0/9b1351ddb447e6abdede7233a4794d538155.pdf
https://pdfs.semanticscholar.org/58a0/9b1351ddb447e6abdede7233a4794d538155.pdf
http://www.ipb.uni-bonn.de/data/
http://flavia.sourceforge.net/
https://www.ideaconnection.com/syngenta-crop-challenge/challenge.php
https://www.ideaconnection.com/syngenta-crop-challenge/challenge.php
https://www.ideaconnection.com/syngenta-crop-challenge/challenge.php
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Doorhalen



  28 / 42 

 

 This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under Grant Agreement No 825395 
 

4.2.5 Best practice regarding open-source software licensing 
As we have shown in the previous sections, the best practice examples typically include multiple 
(Free) Open Source Software (FOSS) packages. Although the internet has been running for decades 
on (F)OSS, with Linux being the primary example, only recently robotics companies have started to 
embrace (F)OSS. The fast access to state-of-the-art algorithms and collaborative (hence cheaper) 
developments outweigh the common not-invented-here attitude. Making use of (F)OSS for 
commercial robotic systems requires proper assessment of the software licences, for which we have 
collected the best practices. A first yet quite complete overview on licensing issues can be found on 
dedicated websites [113-115] 
 
Importantly, a common misunderstanding about the “business friendliness” of open-source software 
licenses must be corrected [116]. Although some licenses, such as (L)GPL [140] live up to their 
difficult reputation that any new software also must be released as FOSS, this is not true for most 
licenses that are used for the recommended frameworks such as ROS. Most often, ROS packages 
are released under Apache 2.0, BSD, or MIT licenses [113] which allow use of the free open-source 
software inside closed commercial software products. 
 
The recommended best practice before commencing agriculture robot product development is to 
conduct a thorough licensing trace to ensure that there are no hidden liabilities. Note that software 
packages without a license are more of a liability than those with a license, because the authors 
formally still have all the rights, even if they make their source code publicly available. 
 
 

4.3 Standards 
From [96] we copy the most well-known standards for agricultural robotics. Adhering to these 
standards and contributing to their development is considered as best (future-proof) practice. 

The most well-known standardization efforts are the following: 

• Machine-to-Machine Communications: The communications standard ISOBUS (ISO standard 
11783) [35] is for standardizing farm equipment that creates and handles farm data. The ISO 
standard 11783 defines serial control and communications data networks for tractors and agricultural 
machinery. In order to achieve a large degree of autonomy, data produced by agricultural vehicles 
must be processed and reasoning needs to be performed. Such data might first be sent to the cloud 
infrastructure of the respective manufacturer before it is then shared between different clouds 
through standardized interfaces, semantics and data structures. 

• SAE J3016: Taxonomy and Definitions for Terms Related to Automate Driving [117] defines 
terminology around automated driving such as automation levels. 

• UL4600 – Standard for Safety for The Evaluation of Autonomous Products [118] provides a set of 
normative requirements on how to build a proper safety case for autonomous systems. The scope 
of this standard is mostly on autonomous driving with a focus on what things need to be assured. 
The standard is scheduled to be released in 2020. 

• SOTIF – Safety of the Intended Functionality [119] deals with assuring the absence of unreasonable 
risk due to hazards resulting from functional insufficiencies of the intended functionality or from 
reasonably foreseeable misuse by persons. Practically, this refers to creating sufficient situational 
awareness and is targeted at finding problems induced by the incapability of sensors and sensor 
fusion to properly determine relevant properties of the environment. SOTIF is a very important 
standard for complex decision logic relying on complex situational awareness. As of its 2019 release, 
it deals only with automation levels L1 and L2 (according to SAE J3016 automation scale) explicitly, 
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but the working group is currently extending the standard up to level 5 (highest level of driving 
automation). 

 

4.4 Legal issues 
Sources such as [96] indicate that currently, there is no comprehensive legal framework for the use 
of (semi/full) autonomous robots in agriculture. Safety, liability, privacy, and data management issues 
still need to be resolved. This document does not serve to solve these issues. Instead, we provide 
an overview of how the best practice examples in industry currently operate with agriculture robotics, 
given the current legal vacuum. We recommend for future research projects to focus on the legal 
aspects pertaining to the following issues in agriculture robots: 

• Maintaining human supervision 
• Human robot collaboration (master-slave trucks) 
• Confining the operational spaces for the robots 
• Analyzing whether there are already agreements with insurance companies? 
• Analyzing the tendency to outsource liability to the supplier?  

 

4.5 Social aspects 
Legal issues are not the only non-technical considerations that may hamper the widespread adoption 
of agriculture robotics. Devitt [120] analysed the social aspects that influence initial adoption and 
sustained use of robotics in agricultural enterprises. Although we are looking for best practices, the 
paper by Devitt provides the opposite; the cognitive factors that may lead to the lack of adoption of 
robotic and autonomous systems in agriculture. The main reasons for not adopting driverless 
tractors, agricultural crop picking robots, and UAV’s are: i) inability to generate trust; ii) loss of farming 
knowledge; and iii) reduced social cognition. Although no concrete best practices are provided, we 
conclude that implementation success is highest if the robotic system performs a limited, well defined 
task, where all robot decisions are easy to interpret, and with a clear economic benefit. 
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5 Conclusion and Future work 
5.1 Guide to replication 

Reproducibility is key for useful Best Practices. The literature references in Chapter 6 and the list of 
datasets in Figure 4 already provide an entrance for newcomers to the field. Typically, the precise 
environmental circumstances and precise hardware setup do not allow exact reproduction of the 
presented research results, and typically the authors need to preserve some confidentiality regarding 
the business details. Therefore, the best approach to reproduction is by following the very open and 
accessible ROS tutorials and information. For Agriculture applications specifically, some community 
contributors have created a set of recommendations and links to further detailed information. 
Readers who intend to reproduce agriculture robot results are strongly recommended to follow these 
suggestions. For completeness, we provide a verbatim copy here of the information found at 
http://wiki.ros.org/agriculture (accessed at 11-11-2021). Rather than following the text below (which 
might become outdated), we urge the reader to go to the original online resource. 

   

5.1.1 ROS 
• You can download a prebuilt image for a raspberry pi or virtual machine here: Ubiquity 

Robotics Download 
• If you would like to install ROS on your Ubuntu machine we use the install script from 

Linorobot. Download 
• Move_Base_Flex Wiki Move Base Flex (MBF) is a backwards-compatible replacement for 

move_base. MBF can use existing plugins for move_base, and provides an enhanced 
version of the planner, controller and recovery plugin ROS interfaces. 

5.1.2 Packages 
• Linorobot Linorobot supports different robot bases you can build from the ground up. 

Supports: 2WD, 4WD, Mecanum Drive, and Ackermann Steering. 
• Greenzie Area Planner Boustrophedon Planner is a coverage path planner that implements 

a modified cellular decomposition algorithm. 
• Nobleo Area Coverage Full Coverage Path Planner (FCPP) Full coverage path planning 

provides a move_base_flex plugin that can plan a path that will fully cover a given area 

5.1.3 Image Datasets 
VineSet - A Large Vine Trunk Image Collection and Annotation using the Pascal VOC format. 
Nuno Namora Monteiro, André Silva Aguiar, Filipe Neves dos Santos, and Armando Jorge Sousa: 
Laboratory of Robotics and IoT for Smart Precision Agriculture and Forestry at CRIIS (Centre for 
Robotics in Industry and Intelligent Systems). Download Vine Dataset 

Embrapa Wine Grape Instance Segmentation Dataset - Embrapa 
WGISD https://github.com/thsant/wgisd 

Sebastian Haug, Jörn Ostermann: A Crop/Weed Field Image Dataset for the Evaluation of 
Computer Vision Based Precision Agriculture Tasks, CVPPP 2014 Workshop, ECCV 2014" You 
can download the complete crop/weed field image dataset here: Download CWFID 

Datasets listed in this paper by Andreas Kamilaris and Francesc X. Prenafeta-Boldú Institute for 
Food and Agricultural Research and Technology (IRTA) 

Deep Learning in Agriculture: A Survey https://arxiv.org/pdf/1807.11809.pdf 

http://wiki.ros.org/agriculture
https://downloads.ubiquityrobotics.com/
https://github.com/linorobot/rosme
http://wiki.ros.org/move_base_flex
https://linorobot.org/
https://github.com/Greenzie/boustrophedon_planner
https://github.com/nobleo/full_coverage_path_planner
http://vcriis01.inesctec.pt/datasets/DataSet/VineSet.zip
https://github.com/thsant/wgisd
https://github.com/cwfid/dataset/releases
https://arxiv.org/pdf/1807.11809.pdf
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• Image-Net Dataset - Images of various plants (trees, vegetables, flowers) 
Download - http://image-net.org/explore?wnid=n07707451 

• ImageNet Large Scale - Visual Recognition Challenge (ILSVRC) - Images that allow object 
localization and detection 
Download - http://image-net.org/challenges/LSVRC/2017/#det 

• University of Arcansas, Plants Dataset - Herbicide injury image database 
Download - https://plants.uaex.edu/herbicide/ 
Download - http://www.uaex.edu/yard-garden/resource-library/diseases/ 

• EPFL, Plant Village Dataset - Images of various crops and their diseases 
Download - https://www.plantvillage.org/en/crops 

• Leafsnap Dataset - Leaves from 185 tree species from the Northeastern United States. 
Download - http://leafsnap.com/dataset/ 

• LifeCLEF Dataset - Identity, geographic distribution and uses of plants 
Download - http://www.imageclef.org/2014/lifeclef/plant 

• PASCAL Visual Object Classes Dataset - Images of various animals (birds, cats, cows, 
dogs, horses, sheep etc.) 
Download - http://host.robots.ox.ac.uk/pascal/VOC/ 

• Africa Soil Information Service (AFSIS) dataset,Continent-wide digital soil maps for sub-
Saharan Africa 
Download - http://africasoils.net/services/data/ 

• UC Merced Land Use Dataset - A 21 class land use image dataset 
Download - http://vision.ucmerced.edu/datasets/landuse.html 

• MalayaKew Dataset - Scan-like images of leaves from 44 species classes. 
Download - http://web.fsktm.um.edu.my/~cschan/downloads_MKLeaf_dataset.html 

• Crop/Weed Field Image Dataset - Field images, vegetation segmentation masks and 
crop/weed plant type annotations. 
Download - https://github.com/cwfid/dataset 
Download 
- https://pdfs.semanticscholar.org/58a0/9b1351ddb447e6abdede7233a4794d538155.pdf 

• University of Bonn Photogrammetry, IGG - Sugar beets dataset for plant classification as 
well as localization and mapping. 
Download - http://www.ipb.uni-bonn.de/data/ 

• Flavia leaf dataset - Leaf images of 32 plants. 
Download - http://flavia.sourceforge.net/ 

• Syngenta Crop Challenge 2017 - 2,267 of corn hybrids in 2,122 of locations between 2008 
and 2016, together with weather and soil conditions 
Download - https://www.ideaconnection.com/syngenta-cropchallenge/challenge.php 

5.1.4 Resources 
Resources and information about navigation algorithms. Robotic path planning in the field of 
agriculture is largely focused on area coverage. Here are some research papers on the topic that 
try to solve the problem: 

• [Coverage Path Planning: The Boustrophedon 
Decomposition](https://www.ri.cmu.edu/publications/coverage-path-planning-the-
boustrophedon-decomposition/) - Howie Choset, Philippe Pignon 

• [Morse Decompositions for Coverage 
Tasks](http://biorobotics.ri.cmu.edu/papers/paperUploads/A028807.pdf) - Ercan U. Acar, 
Howie Choset, Alfred A. Rizzi, Prasad N. Atkar, Douglas Hull 

• [Optimal Field Coverage Path Planning on 2D and 3D 
Surfaces](https://lib.dr.iastate.edu/cgi/viewcontent.cgi?httpsredir=1&article=3239&context=
etd) - Jian Jin, Iowa State University 

http://image-net.org/explore?wnid=n07707451
http://wiki.ros.org/ImageNet
http://image-net.org/challenges/LSVRC/2017/#det
https://plants.uaex.edu/herbicide/
http://www.uaex.edu/yard-garden/resource-library/diseases/
https://www.plantvillage.org/en/crops
http://leafsnap.com/dataset/
http://www.imageclef.org/2014/lifeclef/plant
http://host.robots.ox.ac.uk/pascal/VOC/
http://africasoils.net/services/data/
http://vision.ucmerced.edu/datasets/landuse.html
http://wiki.ros.org/MalayaKew
http://web.fsktm.um.edu.my/%7Ecschan/downloads_MKLeaf_dataset.html
https://github.com/cwfid/dataset
https://pdfs.semanticscholar.org/58a0/9b1351ddb447e6abdede7233a4794d538155.pdf
http://www.ipb.uni-bonn.de/data/
http://flavia.sourceforge.net/
https://www.ideaconnection.com/syngenta-cropchallenge/challenge.php
https://www.ri.cmu.edu/publications/coverage-path-planning-the-boustrophedon-decomposition/
https://www.ri.cmu.edu/publications/coverage-path-planning-the-boustrophedon-decomposition/
http://biorobotics.ri.cmu.edu/papers/paperUploads/A028807.pdf
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?httpsredir=1&article=3239&context=etd
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?httpsredir=1&article=3239&context=etd
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• [Complete Coverage Path Planning in an Agricultural 
Environment](https://lib.dr.iastate.edu/cgi/viewcontent.cgi?httpsredir=1&article=3053&conte
xt=etd) - Theresa Marie Driscoll, Iowa State University 

Other resources on coverage path planning: 

• [Coverage and Search Algorithms](http://www2.cs.siu.edu/~hexmoor/classes/CS404-
S09/Coverage.pdf) - Southern Illinois University 

• [A Survey on Coverage Path Planning for 
Robotics](http://robots.engin.umich.edu/~egalcera/papers/galceran_ras2013.pdf) - Enric 
Galceran and Marc Carreras, University of Girona 

• [On Complete Coverage Path Planning Algorithms for Non-holonomic Mobile Robots: 
Survey and 
Challenges](https://pdfs.semanticscholar.org/ee6b/dd20dd58de3c4fe646103e76b46237821
d38.pdf) - Amna Khan, Iram Noreen, Zulfiqar Habib - Department of Computer Science, 
COMSATS Institute of Information Technology, Lahore 

# Path following 

• [Pure Pursuit](https://github.com/FRC3184/purepursuit) 
• [Robot Mower 2D Navigation](https://github.com/inuex3/robot_mower_2dnav) 
• [simple coverage path planner ROS](https://youtu.be/8A9Dcxl0EAU) 

# Visual Navigation 

* [Visual Teach & Repeat Overview](https://youtu.be/GAveEaNZZZE) 

5.1.5 Hardware 
• ROS 3D Camera's 3D camera survey from ROS Industrial 
• Waterproof Ultrasonic Ultrasonic Distance Measuring 
• Table of hardware List of hardware reviewed. 

 

5.2 Conclusion 
The purpose of this document is to provide an overview of the state of the art of agriculture robotics, 
with a focus on open-source best practices. The overall conclusion is that the best practice, as a 
basis for future open agriculture robots, contains the following elements (not all are needed, 
depending on the exact application): 

• A commercial, open-source ready mobile platform 
• A commercial delta-robot or 6-DoF serial manipulator 
• A custom application-specific end-effector 
• Low-level communication adherence to ISO standard 11783 (ISOBUS) 
• ROS as the main software framework, OpenCV and PCL as additional frameworks 
• A combination of GNSS, IMU, LiDAR, and RGB-D sensors 
• SLAM and path planning algorithms for navigation 
• Deep Learning for crop/weed classification 
• Manipulator motion and grasp planning algorithms 

The references section contains more than 100 literature sources with details about each of these 
elements. 

 

 

https://lib.dr.iastate.edu/cgi/viewcontent.cgi?httpsredir=1&article=3053&context=etd
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?httpsredir=1&article=3053&context=etd
http://www2.cs.siu.edu/%7Ehexmoor/classes/CS404-S09/Coverage.pdf
http://www2.cs.siu.edu/%7Ehexmoor/classes/CS404-S09/Coverage.pdf
http://robots.engin.umich.edu/%7Eegalcera/papers/galceran_ras2013.pdf
https://pdfs.semanticscholar.org/ee6b/dd20dd58de3c4fe646103e76b46237821d38.pdf
https://pdfs.semanticscholar.org/ee6b/dd20dd58de3c4fe646103e76b46237821d38.pdf
https://github.com/FRC3184/purepursuit
https://github.com/inuex3/robot_mower_2dnav
https://youtu.be/8A9Dcxl0EAU
https://youtu.be/GAveEaNZZZE
https://rosindustrial.org/3d-camera-survey/
https://www.ebay.com/itm/JSN-SR04T-2-0-DC5V-Ultrasonic-Distance-Measuring-Transducer-Sensor-Waterproof/172267770126?hash=item281bf5910e:g:N-8AAOSwSONcSnew:rk:3:pf:1&frcectupt=true
https://airtable.com/embed/shrfVWXrIsNMng6zy
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5.3 Future work: ROS-Agriculture Europe 
One of the identified topics for future work regarding the establishment of frameworks for software 
sharing and re-use would be to further apply the initial best practices more comprehensively in ROS-
Agriculture Europe. Covering a great deal of wide-ranging information in agriculture robotics,  we 
believe this deliverable should constitute clear objectives and guidelines for ROS-Agriculture 
Europe. The current ROS-Agriculture Europe Community has already been built and established on 
a small scale in line with the aforementioned element in the conclusion section, i.e. ROS as the main 
software framework. 

 

We have monthly community meetings since January, 2020. Up till now, on the technical side, what 
has been started and set up in ROS-A Europe are the dataset working group, the simulation working 
group, and some initial pilot projects. 

 

Dataset working group: 

One of primary objectives of this working group is to establish an agricultural-specific 
common/standard annotation for datasets. We have broken down this goal into several actionable 
steps, i.e. (1)  create a centralized index of all the available agriculture datasets (2) list the format of 
the annotations and annotation tools which have been used and (3) gather a collection of relevant 
publications [123].  

 

As mentioned in Section 3.2.3, “deep learning algorithms are useful only if there is sufficient high-
quality data available for training”, however, collecting real data is tedious and time-consuming. This 
leads to the creation of another working group: the Simulation working group. 

 

Simulation working group: 

The main advantage of using simulation is to accelerate development of intellectual property. If the 
simulation is fairly photo-realistic, we could transfer simulated images to real-world images or reduce 
the simulation-to-reality gap. Synthetic datasets could play an important role for testing machine 
learning algorithms. Therefore, we have realized the necessity of having a simulation setup which is 
representative for real world agriculture. One of our small pilot projects, as a proof of concept, is to 
use FarmSim19 [22] to tele-operate a vehicle using ROS. 

On the other hand, in terms of the establishment of governance framework, ROS-A Europe is still in 
the conception and initiation phase. At the current stage, we agree that clear governance structure/ 
consortium should be a natural progression rather than an objective imposed forcibly. However, it is 
always nice to envision the future and keep long-term goals in mind, so we have touched upon the 
pros and cons of having a consortium based on the ROS-Industrial experience in several meetings. 
Based on the experience from other partners, we consider the Zephyr project [134] as the best 
practice for governance structure. Although the Zephyr project is not pertinent to agricultural robotics, 
the governance framework is a mechanism for management applied in any organizations/ 
communities. 

Zephyr project 

The following texts were mostly taken from [134]: 

“Zephyr was initially developed by Wind River Systems but has become a project of the Linux 
Foundation. The project is composed of two governing groups: administrative and technical. The 
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administrative leaders meet in a Governing Board that approves the direction and initiatives for the 
project. The technical leadership consists of subsystem maintainers. The Technical Steering 
Committee (TSC) functions as a bridge between these groups. The TSC appoints a chair who 
represents the interests of the TSC on the Governing Board and also works with the TSC to find 
solutions per the direction of Governing Board.  

The governing board chooses policies, articulates strategy and provides guidance to the technical 
steering committee. The technical steering committee serves as highest technical decision body 
consisting of project maintainers. It sets the technical direction for the project and coordinates cross-
community collaboration. Each member organization provides an administrative representative to 
the project’s Governing Board, and a technical representative to the Technical Steering Committee. 

In choosing maintainers from the community of project developers, the TSC evaluates the needs of 
the project as a whole and the subsystem or component, taking into account the active participation 
of the individual. This results in a system of governance that relies on merit and trust as well as 
participation and transparency.” 

Even though we are currently at an early-stage of development, we strongly believe that, given the 
reinforcement by this deliverable, we will be able to coordinate with other partners and provide an 
open software platform with much higher level of reusability and robustness for the Agri-food 
robotics. 
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